Distinct edge geodetic decomposition in graphs

Authors

  • J. JOHN Goverment College of Engineering, Tirunelveli
Abstract:

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π is called the distinct edge geodetic decomposition number of G and is denoted by π_dg1 (G), where g_1 (G) is the edge geodetic number of G. Some general properties satisfied by this concept are studied. Connected graphs which are edge geodetic decomposable are characterized. Connected distinct edge geodetic decomposable graphs of order p with π_dg1 (G)= p-2 are characterised.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Algorithms to Find Linear Geodetic Numbers and Linear Edge Geodetic Numbers in Graphs

-Given two vertices u and v of a connected graph G=(V, E), the closed interval I[u, v] is that set of all vertices lying in some u-v geodesic in G. A subset of V(G) S={v1,v2,v3,....,vk} is a linear geodetic set or sequential geodetic set if each vertex x of G lies on a vi – vi+1 geodesic where 1 ≤ i < k . A linear geodetic set of minimum cardinality in G is called as linear geodetic number lgn(...

full text

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

full text

The edge geodetic number and Cartesian product of graphs

For a nontrivial connected graph G = (V (G), E(G)), a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets. Bounds for the edge geodetic number of Cartesian product graphs are proved and improved upper bounds are determined for a speci...

full text

Geodetic Sets in Graphs

Geodetic sets in graphs are briefly surveyed. After an overview of earlier results, we concentrate on recent studies of the geodetic number and related invariants in graphs. Geodetic sets in Cartesian products of graphs and in median graphs are considered in more detail. Algorithmic issues and relations with several other concepts, arising from various convex and interval structures in graphs, ...

full text

Geodetic Domination in Graphs

A subset S of vertices in a graph G is a called a geodetic dominating set if S is both a geodetic set and a (standard) dominating set. In this paper, we study geodetic domination on graphs.

full text

Geodetic sets in graphs

For two vertices u and v of a graph G, the closed interval I[u, v] consists of u, v, and all vertices lying in some u − v geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for u, v ∈ S. If I[S] = V (G), then S is a geodetic set for G. The geodetic number g(G) is the minimum cardinality of a geodetic set. A set S of vertices in a graph G is uniform if the ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  185- 196

publication date 2021-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023